「最大の素数」は2233万8618桁! 謎に挑む数学者たち

2016/06/11 16:00

2、3、5……から始まる素数は、数学という大伽藍を積み上げるレンガのようだ。しかし、その基本ルールはまだだれも知らない(撮影/写真部・長谷川唯)
2、3、5……から始まる素数は、数学という大伽藍を積み上げるレンガのようだ。しかし、その基本ルールはまだだれも知らない(撮影/写真部・長谷川唯)

 100万ドルの懸賞がかけられた数学の最難問、リーマン予想。もしそれが証明され、「素数」をめぐる数学の基本法則がわかれば、世界は変わるかもしれない。今年はリーマン没後150年──。

 2016年1月、既知を超える「最大の素数」が見つかったと報告された。3003764から始まって86436351まで、2233万8618桁の数である。1ページに2千桁詰め込んだとしても、全部を印刷すれば1万枚を超える。

 素数とは、1とその数自身でしか割り切れない自然数、と定義される。この「最大の素数」は、「2の乗マイナス1」という特別な形で書ける素数(メルセンヌ素数)で、インターネット上で多数のパソコンをつなぎ、分散処理で未知の素数を次々計算しようという1996年から始まったプロジェクト、GIMPS(Great Internet Mersenne Prime Search)の最新の成果だ。これでも素数の研究はまったく終わらない。

 素数は無限にあるという証明は簡単だ。もし、すべての素数がわかったとして、それらをすべて掛け算し1を足した数は、「すべての素数で割っても割り切れず、1余る」。それは、未知のもっと大きな「素数」で割り切れるか、それ自身「素数」であるかのどちらかだ。つまり論理的に最大の素数は存在せず、素数は無限にあり、その探索は終わらないのだ。

●ゼータ関数の探究

 素数は、いわば数学における基本部品である。その「部品」を一貫して支配している「規則」はあるのだろうか? これが数学者が持ち続けた疑問だった。

 19世紀前半のドイツの大数学者カール・フリードリヒ・ガウスは、自然数の中に素数がどのくらいの割合で存在するのか、という疑問を抱き、x以下の素数の個数をおおまかに示す簡単な式(いわゆる素数定理)を予想した。その証明がなされたのは100年ほど後だったが、結果は素数の秩序を示す「規則」にはほど遠かった。

1 2 3

あわせて読みたい

  • 京大生に大ヒット「素数ものさし」からセクシー素数まで? 素数の奥深き世界

    京大生に大ヒット「素数ものさし」からセクシー素数まで? 素数の奥深き世界

    dot.

    5/11

    正解するのはまず不可能「1+1が2になる」理由

    正解するのはまず不可能「1+1が2になる」理由

    東洋経済

    11/24

  • 「ABC予想」証明した望月教授に「ノーベル賞の1つや2つでは足りない」と関係者

    「ABC予想」証明した望月教授に「ノーベル賞の1つや2つでは足りない」と関係者

    dot.

    4/3

    東大発“数学ベンチャー”驚異の技術力 AIを使って浸水調査を半年→1時間に短縮

    東大発“数学ベンチャー”驚異の技術力 AIを使って浸水調査を半年→1時間に短縮

    AERA

    3/22

  • 50億匹も大量発生! 「素数ゼミ」って何?

    50億匹も大量発生! 「素数ゼミ」って何?

    AERA

    8/16

別の視点で考える

特集をすべて見る

この人と一緒に考える

コラムをすべて見る

カテゴリから探す